Search results

Search for "band gaps" in Full Text gives 46 result(s) in Beilstein Journal of Nanotechnology.

Biocatalytic synthesis and ordered self-assembly of silica nanoparticles via a silica-binding peptide

  • Mustafa Gungormus

Beilstein J. Nanotechnol. 2023, 14, 280–290, doi:10.3762/bjnano.14.25

Graphical Abstract
  • structure of silica particles, in which the alternate layers differ in refractive index. The periodic difference in the refractive index creates photonic band gaps, in which certain wavelengths of the light cannot propagate, depending on the size of the periodic structures and the differences in the
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2023

Improvement of the thermoelectric properties of a MoO3 monolayer through oxygen vacancies

  • Wenwen Zheng,
  • Wei Cao,
  • Ziyu Wang,
  • Huixiong Deng,
  • Jing Shi and
  • Rui Xiong

Beilstein J. Nanotechnol. 2019, 10, 2031–2038, doi:10.3762/bjnano.10.199

Graphical Abstract
  • oxygen molecules. Then we calculate the formation energies and band gaps of these defect structures. The absolute Ef values are 2.074 eV (VO1), 2.076 eV (VO2) and 4.108 eV (VO3) while the band gaps are 0.837 eV (VO1), 0.797 eV (VO2) and 0.831 eV (VO3). In contrast to the bulk MoO3, the three defective
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2019

Structural and optical properties of penicillamine-protected gold nanocluster fractions separated by sequential size-selective fractionation

  • Xiupei Yang,
  • Zhengli Yang,
  • Fenglin Tang,
  • Jing Xu,
  • Maoxue Zhang and
  • Martin M. F. Choi

Beilstein J. Nanotechnol. 2019, 10, 955–966, doi:10.3762/bjnano.10.96

Graphical Abstract
  • is smaller than 3 nm, the surface plasmon resonance band broadens into the baseline and the absorption spectra show only the characteristic exponential decay curve [40]. For even smaller AuNCs, some molecular features may begin to appear because of the presence of HOMO–LUMO band gaps [41]. The inset
PDF
Album
Full Research Paper
Published 25 Apr 2019

Reduced graphene oxide supported C3N4 nanoflakes and quantum dots as metal-free catalysts for visible light assisted CO2 reduction

  • Md Rakibuddin and
  • Haekyoung Kim

Beilstein J. Nanotechnol. 2019, 10, 448–458, doi:10.3762/bjnano.10.44

Graphical Abstract
  • for the CN-5 QDs, which corresponds to the (002) plane of hexagonal g-C3N4, indicating crystalline nature of the QDs [40]. Hence, TEM, HRTEM, and FESEM studies confirm the morphology and size of the NFs and QDs and also confirm the presence of rGO in the hybrid material. The band gaps of the prepared
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Amorphous NixCoyP-supported TiO2 nanotube arrays as an efficient hydrogen evolution reaction electrocatalyst in acidic solution

  • Yong Li,
  • Peng Yang,
  • Bin Wang and
  • Zhongqing Liu

Beilstein J. Nanotechnol. 2019, 10, 62–70, doi:10.3762/bjnano.10.6

Graphical Abstract
  • absorption edges are 398, 405, and 488 nm for TNAs, Ni–P/TNAS, and NixCoyP/TNAs, corresponding the band gaps of 3.12, 3.06, and 2.54 eV, respectively. Sample NixCoyP/TNAs had a band gap 0.52 eV lower than that of Ni–P/TNAs. This indicates that the binary-metal phosphides synthesized via electrodeposition
PDF
Album
Supp Info
Full Research Paper
Published 07 Jan 2019

Two-dimensional semiconductors pave the way towards dopant-based quantum computing

  • José Carlos Abadillo-Uriel,
  • Belita Koiller and
  • María José Calderón

Beilstein J. Nanotechnol. 2018, 9, 2668–2673, doi:10.3762/bjnano.9.249

Graphical Abstract
  • band gaps range from millielectronvolts to a few electronvolts. They can also be stacked in van der Waals heterostructures [22][24][25] favoring miniaturization and device integration. Incorporation of dopants affects the properties of isolated or stacked monolayers [26][27], as they do in bulk systems
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2018

Thickness-dependent photoelectrochemical properties of a semitransparent Co3O4 photocathode

  • Malkeshkumar Patel and
  • Joondong Kim

Beilstein J. Nanotechnol. 2018, 9, 2432–2442, doi:10.3762/bjnano.9.228

Graphical Abstract
  • in Figure 5c supports the claim of porosity in the grown Co3O4 film and the void-free interface between Co3O4/FTO. Further, we estimated the thickness-dependent band-gap energies (Eg) of the Co3O4 samples using Tauc’s relation as shown in Figure 5d. The coexistence of bandgaps two distinct band gaps
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2018

Hierarchical heterostructures of Bi2MoO6 microflowers decorated with Ag2CO3 nanoparticles for efficient visible-light-driven photocatalytic removal of toxic pollutants

  • Shijie Li,
  • Wei Jiang,
  • Shiwei Hu,
  • Yu Liu,
  • Yanping Liu,
  • Kaibing Xu and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 2297–2305, doi:10.3762/bjnano.9.214

Graphical Abstract
  • DRS measurements are shown in Figure S1 (Supporting Information File 1). The band gaps are determined to be 2.17 for Ag2CO3 and 2.66 eV for Bi2MoO6. The band potentials of Ag2CO3 and Bi2MoO6 can be estimated by the empirical equations: where the X value for Bi2MoO6 is 5.5 eV [43], and that for Ag2CO3
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2018

Improving the catalytic activity for hydrogen evolution of monolayered SnSe2(1−x)S2x by mechanical strain

  • Sha Dong and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2018, 9, 1820–1827, doi:10.3762/bjnano.9.173

Graphical Abstract
  • located at the Γ-point. The band gaps are 1.59 eV for the SnS2 monolayer and 0.80 eV for the SnSe2 monolayer, in agreement with the previous reported values of 1.60 eV and 0.81 eV, respectively [35]. The band structures of monolayer SnSe2(1−x)S2x with x equal to 0.75, 0.50 and 0.25 are shown in Figure 1f
  • the top of S are close to zero at a tensile strain of 10%; thus, strain can be used to improve the catalytic activity for HER. As shown in Figure 4, also the band gaps show great dependence on the applied strain. The band gap decreases from 1.59 to 1.48 eV for the SnS2 monolayer as the compressive
  • strain increases from 0% to −5%, whereas it decreases from 1.59 to 0.90 eV as the tensile strain increases from 0% to 10%. The results indicates that the strain can be used to tune the band gaps of the SnSe2(1−x)S2x monolayers. These effects may create new opportunities in some specific applications
PDF
Album
Full Research Paper
Published 18 Jun 2018

Sheet-on-belt branched TiO2(B)/rGO powders with enhanced photocatalytic activity

  • Huan Xing,
  • Wei Wen and
  • Jin-Ming Wu

Beilstein J. Nanotechnol. 2018, 9, 1550–1557, doi:10.3762/bjnano.9.146

Graphical Abstract
  • hence are of different sizes, and especially different grain sizes that would readily affect the band gaps. Song et al. reported that the composite of anatase TiO2 synthesized via two different routes resulted in enhanced charge separation and hence increased photo-electrochemical response and
PDF
Album
Supp Info
Full Research Paper
Published 24 May 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • . This also enhances the light absorption range towards longer wavelengths. The band edge potentials and band gaps of different semiconductor oxides and sulfides are given in Figure 2. Photocatalytic reduction of Cr(VI) over TiO2 modified with simple transition metal oxides under UV irradiation
  • oxides: Spinel types of metal oxides with the general formula AB2O4 (where A is a divalent metal ion and B is a trivalent metal ion) possess narrow band gaps which enable them to absorb throughout the visible region [179]. In addition, these materials have a high tendency for conduction of electrons
PDF
Album
Review
Published 16 May 2018

Computational exploration of two-dimensional silicon diarsenide and germanium arsenide for photovoltaic applications

  • Sri Kasi Matta,
  • Chunmei Zhang,
  • Yalong Jiao,
  • Anthony O'Mullane and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1247–1253, doi:10.3762/bjnano.9.116

Graphical Abstract
  • GW results, the BSE method was adopted to obtain the light absorption spectrum [21][22] and the optical band gap. BSE was solved by using the ten highest valance bands and ten lowest conduction bands and with a 13 × 5 × 1 k-grid. Using the band gaps obtained from GW and BSE functional methods the
  • (Figure 3a–d) are semiconductors with indirect band gaps (the VBM and CBM locations are marked). The bandgaps are given in Table 2. These results are consistent with previously reported calculated values for both bulk and monolayers of GeAs2 with values of 0.99 and 1.64 eV, respectively [10]. The decrease
  • . However, for the purpose of the illustrating the dependence of the band gap variation on strain, these calculations can be helpful. The quasi-particle band gaps of SiAs2 and GeAs2 monolayer compounds were found to be 2.26 and 1.86 eV, respectively (Figure 5). These values are comparable with the band gaps
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2018

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • energy of the as-prepared samples, as listed in Table 1. This further illustrates that the band gaps of the samples improve with the increase of the amount of ZnO. It is particularly noteworthy that the band gap of as-synthesized ZnO is 3.16 eV, which is smaller than the band gap of conventional bulk ZnO
  • obtained in XPS measurements are 0.96 and 2.27 eV, and the band gaps calculated from UV–vis spectra are 1.83 eV for BiOI and 3.16 eV for ZnO. Thus, the conduction band minimum energy should occur at –0.87 eV and –0.89 eV for BiOI and ZnO, respectively. While BiOI possesses a p-type semiconductor material
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

  • T. Anh Thu Do,
  • Truong Giang Ho,
  • Thu Hoai Bui,
  • Quang Ngan Pham,
  • Hong Thai Giang,
  • Thi Thu Do,
  • Duc Van Nguyen and
  • Dai Lam Tran

Beilstein J. Nanotechnol. 2018, 9, 771–779, doi:10.3762/bjnano.9.70

Graphical Abstract
  • surface plasmon resonance band of Au NPs, which further confirms the formation of the hybrid Au NP/ZnO structures [24][25]. Using the Kubelka–Munk function and Tauc plots, the band gaps (Eg) were determined as 3.3 and 3.2 eV for ZnO and Au NPs/ZnO, respectively, as shown in Figure 3b. It can be seen that
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2018

Synthesis and characterization of two new TiO2-containing benzothiazole-based imine composites for organic device applications

  • Anna Różycka,
  • Agnieszka Iwan,
  • Krzysztof Artur Bogdanowicz,
  • Michal Filapek,
  • Natalia Górska,
  • Damian Pociecha,
  • Marek Malinowski,
  • Patryk Fryń,
  • Agnieszka Hreniak,
  • Jakub Rysz,
  • Paweł Dąbczyński and
  • Monika Marzec

Beilstein J. Nanotechnol. 2018, 9, 721–739, doi:10.3762/bjnano.9.67

Graphical Abstract
  • values for the electrochemical energy band gap (Eg). The electrochemical properties of pure SP1 and SP2 in solution were examined. The behavior of both compounds during reduction and oxidation processes were investigated in order to determine the energy levels and band gaps. For SP1 imine, the peak
  • onsets were as follows: Ered = −1.51 V and Eox = 0.84 V. In the case of SP2 imine, similar processes occur significantly stronger as demonstrated by the energy values Ered = −1.78 V and Eox = 1.29 V (see Figure 7a). It also affects the electrochemically determined band gaps, which are much larger for SP2
PDF
Album
Full Research Paper
Published 26 Feb 2018

Adsorption and diffusion characteristics of lithium on hydrogenated α- and β-silicene

  • Fadil Iyikanat,
  • Ali Kandemir,
  • Cihan Bacaksiz and
  • Hasan Sahin

Beilstein J. Nanotechnol. 2017, 8, 1742–1748, doi:10.3762/bjnano.8.175

Graphical Abstract
  • chalcogenides [18]. Structural stability, chemical versatility and electronic band gaps of 2D materials that cover the range from 0 to 5 eV make them attractive for current nanoscale device applications. In the large family of 2D materials, silicene deserves a special consideration due to its compatibility and
PDF
Album
Full Research Paper
Published 23 Aug 2017

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
  • -heptazine and g-o-triazine, which exhibit the band gaps of 5.49, 4.85, 4.30, 4.13, 2.97, 2.88 and 0.93 eV, respectively [62]. Among these seven phases, the β-C3N4 crystalline phase possess similar hardness as compared to that of diamond, and the pseudocubic-C3N4 and g-h-triazine-C3N4 possess direct band gap
  • structure, while other five phases have indirect band gaps in their bulk structures [62]. It is noteworthy to mention here that the polymeric graphitic carbon nitride (g-C3N4) has been reported as the most stable, highly ordered polymeric structure with pendant amino groups and tri-s-triazine (C6N7) as the
  • as an anode and is connected to a Pt cathode. The photogenerated electrons reduce H+ ions to generate H2 on the Pt electrode while holes oxidize water to form O2 on TiO2 electrode, as illustrated in the Figure 4a. After this discovery, semiconductor-based materials with suitable band gaps have
PDF
Album
Review
Published 03 Aug 2017

Synthesis of coaxial nanotubes of polyaniline and poly(hydroxyethyl methacrylate) by oxidative/initiated chemical vapor deposition

  • Alper Balkan,
  • Efe Armagan and
  • Gozde Ozaydin Ince

Beilstein J. Nanotechnol. 2017, 8, 872–882, doi:10.3762/bjnano.8.89

Graphical Abstract
  • the as-deposited PANI films with three characteristic peaks at 360, 430 and 796 nm, indicating the formation of a polaron band transition. Furthermore, the peak at 430 nm originates from polaron–bipolaron band transitions consistent with the emeraldine salt form of PANI [44]. The band gaps of both
PDF
Album
Full Research Paper
Published 18 Apr 2017

Investigation of growth dynamics of carbon nanotubes

  • Marianna V. Kharlamova

Beilstein J. Nanotechnol. 2017, 8, 826–856, doi:10.3762/bjnano.8.85

Graphical Abstract
  • prevented the aggregation of particles and ensured a perpendicular growth mode. As a result, the grown SWCNTs had a very narrow diameter distribution centered at 1.7 nm and high content of semiconducting fraction of >95%. The range of band gaps of SWCNTs was <0.08 eV. They demonstrated an excellent thin
PDF
Album
Review
Published 11 Apr 2017

Tunable plasmons in regular planar arrays of graphene nanoribbons with armchair and zigzag-shaped edges

  • Cristian Vacacela Gomez,
  • Michele Pisarra,
  • Mario Gravina and
  • Antonello Sindona

Beilstein J. Nanotechnol. 2017, 8, 172–182, doi:10.3762/bjnano.8.18

Graphical Abstract
  • as semimetals, with barely touching valence and conduction bands (Figure 1a,c). 5AGNR and 11AGNR are small-gap semiconductors (Figure 1b,d), contrary to nearest-neighbor TB approaches in which all AGNRs appear gapless [27]. Indeed, several DFT studies have carefully characterized the band gaps of
PDF
Album
Full Research Paper
Published 17 Jan 2017

Tandem polymer solar cells: simulation and optimization through a multiscale scheme

  • Fanan Wei,
  • Ligang Yao,
  • Fei Lan,
  • Guangyong Li and
  • Lianqing Liu

Beilstein J. Nanotechnol. 2017, 8, 123–133, doi:10.3762/bjnano.8.13

Graphical Abstract
  • Figure 1, the concept of a tandem structure provides a promising solution to this issue by expanding the absorption spectrum using two types of active materials with different band gaps. More and more works [9][10][11] verify that tandem or triple polymer solar cells can greatly enhance the PCE as
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2017

Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania

  • Jakub S. Prauzner-Bechcicki,
  • Lukasz Zajac,
  • Piotr Olszowski,
  • Res Jöhr,
  • Antoine Hinaut,
  • Thilo Glatzel,
  • Bartosz Such,
  • Ernst Meyer and
  • Marek Szymonski

Beilstein J. Nanotechnol. 2016, 7, 1642–1653, doi:10.3762/bjnano.7.156

Graphical Abstract
  • molecules or conducting polymers offer several advantages, e.g., they are relatively cheap to fabricate and can be used on flexible substrates [1]. The use of organic sensitizers allows even wide-band-gap semiconductors to be used in photovoltaic applications. Semiconductors with large band gaps offer
PDF
Album
Commentary
Published 09 Nov 2016

Current–voltage characteristics of manganite–titanite perovskite junctions

  • Benedikt Ifland,
  • Patrick Peretzki,
  • Birte Kressdorf,
  • Philipp Saring,
  • Andreas Kelling,
  • Michael Seibt and
  • Christian Jooss

Beilstein J. Nanotechnol. 2015, 6, 1467–1484, doi:10.3762/bjnano.6.152

Graphical Abstract
  • the conduction and valence bands, so-called band offsets, which can be calculated by the difference in the electron affinities, χn,p as Because the materials have different band gaps and Fermi energies, the total built-in potential, Vbi, is the sum of the partial built-in potentials of the
PDF
Album
Full Research Paper
Published 07 Jul 2015

Charge carrier mobility and electronic properties of Al(Op)3: impact of excimer formation

  • Andrea Magri,
  • Pascal Friederich,
  • Bernhard Schäfer,
  • Valeria Fattori,
  • Xiangnan Sun,
  • Timo Strunk,
  • Velimir Meded,
  • Luis E. Hueso,
  • Wolfgang Wenzel and
  • Mario Ruben

Beilstein J. Nanotechnol. 2015, 6, 1107–1115, doi:10.3762/bjnano.6.112

Graphical Abstract
  • * transitions. In the inset the region of the first absorption band and the graphical estimation of the onset of the bands are illustrated. The onset of Al(Op)3 in solution is 464 nm (1) and in the thin film is 476 nm (2). The respective optical HOMO–LUMO band gaps converted to eV are 2.67 eV and 2.60 eV. The
PDF
Album
Full Research Paper
Published 05 May 2015

Characterization of nanostructured ZnO thin films deposited through vacuum evaporation

  • Jose Alberto Alvarado,
  • Arturo Maldonado,
  • Héctor Juarez,
  • Mauricio Pacio and
  • Rene Perez

Beilstein J. Nanotechnol. 2015, 6, 971–975, doi:10.3762/bjnano.6.100

Graphical Abstract
  • and this characteristic disappears as the annealing temperature increases. The films obtained were annealed from 25 to 1000 °C, showing a gradual increase in transmittance spectra up to 85%. The optical band gaps obtained for these films are about 3.22 eV. The PL measurement shows an emission in the
PDF
Album
Full Research Paper
Published 16 Apr 2015
Other Beilstein-Institut Open Science Activities